2025 年度シラバス

科目分類/Subject Categories					
学部等/Faculty	/工芸科学部 : /School of Science and	今年度開講/Availability	/有:/Available		
	Technology				
学域等/Field / 設計工学域: /Academic Field of		年次/Year	/2年次:/2nd Year		
	Engineering Design				
課程等/Program	/専門基礎科目 : /Specialized Foundational	学期/Semester	/第1クォータ:/First quarter		
	Subjects				
分類/Category	/物理学:/Physics	曜日時限/Day & Period	/水 3-4 : /Wed.3-4		

科目情報/Course Information					
時間割番号	12013301				
/Timetable Number					
科目番号	12061240				
/Course Number					
単位数/Credits	1				
授業形態	講義・実験:Lecture/Lab)			
/Course Type					
クラス/Class	рс				
授業科目名	物理学実験法及び基礎実験(1Q):Laboratory Work in Basic Physics				
/Course Title					
担当教員名	/西尾 弘司/一色 俊之:NISHIO Koji/ISSHIKI Toshiyuki				
/ Instructor(s)					
その他/Other	インターンシップ実施科	国際科学技術	ドコース提供	PBL 実施科目 Project	DX 活用科目
	目 Internship	科目 IGP		Based Learning	ICT Usage in Learning
	実務経験のある教員によ				
	る科目				
	Practical Teacher				
科目ナンバリング					
/Numbering Code					

授業の目的・概要 Objectives and Outline of the Course

- 日 物理学実験を実施する際に必要となる誤差論、基礎的な測定法および測定機器、報告書のまとめかた等の講義を行う。次いで、下記に示す実験種目から4-6種目の実験を指定し、これらを巡回して実施する。更に、これらの実験結果をまとめて提出されたレポートを介して、報告書の作成・表現・考察の方法等について直接指導する。
- Basic matters required for "laboratory work in basic physics", such as error theory, basic measurement method and equipment, and method for writing a report are lectured in the first. After the lecture a member of the class carries out one of the task listed below in turn every week and makes a report about the task (4-6 weeks). Submitted report is checked by teaching staff from viewpoint of style, expression, treatment of data, and reasonableness of discussion, for example. Also proper guide is given for making a good report.

学習の到達目標 Learning Objectives

- 日 テーマに応じて適切かつ丁寧な実験計測が行なえる。
 - 計測データを適切に処理し、目的の物理量の算出が行なえる。
 - 計測データや算出された物理量の信頼性の評価ができる。
 - 実験結果に対して論理的な考察・議論ができる。
 - 上記 2-4 のポイントをふまえた実験報告書が作成できる。
- 英 To become capable of carrying out experiments appropritely for each task
 - To become capable of calculating objective physical quantities by appropriate treatment of measured data
 - To become capable of evaluation of reliability of measured data and calculated results
 - To become capable of logical discussion about experimental results
 - To become capable of writing an experimental report basis on the above points 2-4

学習	学習目標の達成度の評価基準 / Fulfillment of Course Goals(JABEE 関連科目のみ)		
日			
英			

授業	授業計画項目 Course Plan					
No.		項目 Topics	内容 Content			
1			実験の実施手順,レポートの内容と提出方法。測定の意味,有効数字,視差,副尺,ノ			
			ギスとマイクロメータの使い方			
	英 Guidance and basic skill of		How to start the class, Contents of experimental report and its submission			
		physical measurments	procesure.			
			Meaning of measurment, Significant figure, Parallax, Usage of caliper and micrometer,			
			Vernier.			
2	2 日 誤差論・最小自乗法 誤差、最確値、確率誤差、誤差伝播の法則、価値平均		誤差,最確値,確率誤差,誤差伝播の法則,価値平均,回帰計算			
	英	Error theory and the method	Error, Most probable value, Probability error, Weighted average, Error propargation,			
		ofleast squares	Regression calculation.			
3	日	力学(1)	重力(Borda の振子,物理振子),慣性モーメント(二本吊り法)			
	英	Dynamics(1)	Gravity (Borda's pendulum, Physical pendulum), Moment of inertia (bifilar			
			suspension)			
4	日	力学(2)	粘性(小球落下法,毛細管法),表面張力(Jolly 法)			
	英	Dynamics(2)	Viscosity (Falling ball mathod, Capillary method), Surface tension (Jolly's Method)			
5	日	力学(3)	ヤング率(Ewing の装置,Searle の装置),剛性率 (捩り振子)			
	英	Dynamics(3)	Dynamics(3)			
6	日	熱学	熱膨張 (線膨張), 熱の仕事当量			
	英	Thermology	Thermal Expansion (Linear), Mechanical Equivalent of heat			
7	日	音響学	共鳴菅,Melde の装置,弦の定常波			
	英	Acoustics	Resonance tube, Melde's apparatus, Standing wave on chord			
8	日	光学(1)	幾何光学 (薄い凸および凹レンズの焦点距離), 波動光学 (Fresnel の複プリズムと帯板)			
	英	Optics(1)	Geometric optics (Focal length of thin lens), Wave optics (Fresnel's biprism and			
			plate)			
9	日	光学(2)	光物性(屈折率(Newton 環法,顕微鏡法),旋光性(Laurent 検糖計))			
	英	Optics(2)	Refraction index (Newton ring method, Microscope method), Optical rotation			
			(Laurent's half-shadow saccharimeter)			
10	日	光学(3)	分光法(回折格子)			
	英	Optics(3)	Spectrometry (Diffraction grating)			
11	日	電磁気学(1)	電気計測(Wheatstone 橋,Kohlrausch 橋,電位差計)			
	英	Electromagnetism(1)	Electric measurment (Wheatstone bridge, Kohlrausch bridge, Potentiometer)			
12	日	電磁気学(2)	電気回路部品(インピーダンス,トランジスタの特性)			
	英	Electromagnetism(2)	Electric components (Impedance, Property of transistor).			
13	日	電磁気学(3)	電子物性(サーミスタの特性,ホール効果,熱電対)			
	英	Electromagnetism(3)	Electronic property (Thermistor, Hall effect, Thermocouple)			
14	日	電磁気学(4)	磁気(地磁気の水平分力の測定)			
	英	Electromagnetism(4)	Magnetism (Holizontal componet of geomagnetism)			
15	日	レポート作成指導	提出されたレポートについて個別添削指導を行う。			
	英	Corrction guidance	Correction guidance for submitted report by invidivial interview.			

履	履修条件 Prerequisite(s)				
E	基本的な物理学(力学・電磁気学・光学等)の知識が必要である。				
	本科目の理解を深めるため「統計数理」の履修を推奨する。				
英	Basic knowledge in physics (dynamics, electromagnetism, optics etc.) is required.				
	In order to deepen the understanding of this course, it is recommended to take "Mathematical Statistics".				

授業時間外学習(予習·復習等)

Required study time, Preparation and review

- 日 各授業に対し、実験内容に関する予習 1 時間、データ整理等を含む復習 1 時間を最低限確保すること。また担当教員の指示に従いレポート作成の時間を要する。
- 英 Preparation (to understand experimental contents and procedure): 1hr,

Review: 1hr. (at least).

In addition, a time to prepare an experimental report (including data processing) is also needed.

教科書/参考書 Textbooks/Reference Books

日 教科書:吉川泰三編 「改訂新版 物理学実験」 学術図書出版

ISBN 978-4-7806-1186-1

英 | Textbook: "kaiteishinban buturigakujikken", Taizo Yoshikawa ed. Gakujyututosyo-syuppan

ISBN 978-4-7806-1186-1

成績評価の方法及び基準 Grading Policy

- 日 実施した実験に対してレポートを提出させ、学習目標に沿ってその内容を評価する(約70%)。実験に対する取り組み状況も評価 対象とする場合がある(約30%)。実験実施およびレポート提出が不足する学生は成績評価対象外とする。
- By the submited reports evaluated their contents along the learning objectives (about 70%). There is a case that efforts for the experiment are evaluated (about 30%). Students who lack the experimental implementation and report submitted to the results e

留意事項等 Point to consider

- 日 │ ・安全確保に関する指示を守らない者は実験を中止させるので、あらかじめ了解しておくこと。
 - ・レポート作成において、盗用・剽窃行為(他人の文章・語句・図・説などを盗んで使うこと)を厳禁する。
- 英 A person who do not follow the instructions on safety will be suspended the experiment.

Plagiarism is strictly prohibited in a preparation of an experimental report.