2025 年度シラバス

科目分類/Subject Categories			
学部等/Faculty /工芸科学部 : /School of Science and 今年		今年度開講/Availability	/有:/Available
Technology			
学域等/Field / 設計工学域: /Academic Field of 4		年次/Year	/3年次:/3rd Year
	Engineering Design		
課程等/Program	/電子システム工学課程・課程専門科目:	学期/Semester	/前学期:/First term
	/Specialized Subjects for Undergraduate		
	Program of Electronics		
分類/Category	/:/	曜日時限/Day & Period	/金1:/Fri.1

科目情報/Course Information					
時間割番号	間割番号 12115101				
/Timetable Number					
科目番号	12161122				
/Course Number					
単位数/Credits	2				
授業形態	講義・演習:Lecture/Pra	cticum			
/Course Type					
クラス/Class	電				
授業科目名	AI・データサイエンス基礎	🗄 : Fundamen	tals of AI and	Data Science	
/Course Title					
担当教員名	/髙井 伸和:TAKAI Nob	ukazu			
/ Instructor(s)					
その他/Other	インターンシップ実施科	国際科学技術	ドコース提供	PBL 実施科目 Project	DX 活用科目
	目 Internship	科目 IGP		Based Learning	ICT Usage in Learning
				0	
	実務経験のある教員によ				
	る科目				
	Practical Teacher				
科目ナンバリング	B_EL3620				
/Numbering Code					

授業	の目的・概要 Objectives and Outline of the Course
日	授業・演習および最後3回の PBL により、AI、データサイエンスの基礎を習得することを目的とする。
英	Learn the fundamentals of Al and data science through classes, problem exercises and project based learning.

学習	学習の到達目標 Learning Objectives		
日	Python によるコーディングができる		
	機械学習の全体像を理解する		
	ニューラルネットワークによる画像認識の仕組みを理解する		
英	Get coding skills of Python		
	Understand outline of machine learning		
	Understand outline of neural network through image recognition		

学習	学習目標の達成度の評価基準 / Fulfillment of Course Goals(JABEE 関連科目のみ)				
日					
英					

授業計画項目 Course Plan			
No.		項目 Topics	内容 Content
1	日	Python 入門(1)	授業概要、Python インストール、Jupyter Notebook の使い方

	英	Python (1)	Introduction, Install Python, Jupyter notebook	
2	日	Python 入門(2)	科学演算 Numpy、 Scipy	
	英	Python (2)	Numpy, Spicy	
3 日 Python 入門 (3)		Python 入門 (3)	データ可視化 Matplotlib	
	英	Python (3)	Matplotlib	
4	日	機械学習の概要	教師あり学習と教師なし学習、強化学習の概要、単回帰	
	英	Introduction of machine	Introduction of supervised, unsupervised, reinforcement learning, simple regression	
		learning		
5	日	機械学習の基本的な手順	データ整理、モデル構築と評価の流れ、重回帰、ロジスティック回帰	
	英	Basic process of machine	Basic process of machine learning	
		learning		
6	日	教師あり学習(1)	決定木、エントロピー、情報利得	
	英	Supervised learning (1)	Decision Tree, entropy, information gain	
7	日	教師あり学習(2)	k-近傍法、サポートベクターマシン	
	英	Supervised learning (2)	k-Nearest Neighbors, Support Vector Machine	
8	日	教師なし学習	クラスタリング	
	英	Unsupervised learning	Clustering	
9 日 ニューラルネットワークの基 パーセプトロン、論理回路の表現、多層パーセプトロン		パーセプトロン、論理回路の表現、多層パーセプトロン		
· · · · · · · · · · · · · · · · · · ·				
	英	Basics of neural network	Perceptron, logic circuit, multi layer perceptron	
10	日	ニューラルネットワーク(1)	活性化関数、3 層ニューラルネットワークの実装、出力層の設計	
	英	Neural network (1)	Activation function, three layer neural network, design of output layer	
11	日	ニューラルネットワーク(2)	手書き文字認識、推論処理、バッチ処理	
	英	Neural network (2)	Handwriting recognition, inference processing, batch processing	
12	日	ニューラルネットワーク(3)	ニューラルネットワークの学習、損失関数、勾配法、学習アルゴリズムの実装	
	英	Neural network (3)	Learning, loss function, gradient method	
13	日	PBL (1)	課題の設定、戦略会議、実装方針の決定	
	英	PBL (1)	Program setting, strategy, programing	
14	日	PBL (2)	実装途中経過の報告、修正指針の議論	
	英	PBL (2)	Report, discussion and feedback	
15	日	PBL (3)	実装結果の最終報告会	
	英	PBL (3)	Final presentation	

履修	履修条件 Prerequisite(s)			
日				
英				

授業時間外学習(予習・復習等)

Required study time, Preparation and review

日 各自のノートパソコンで演習を行いながら授業を進める。ノートパソコンを持参し、KITnet 等の WiFi に接続可能であることを 確かめておくこと。

各授業において課題を設定する。課題(プログラムの実装)に3時間程度の学習時間を要する。課題は次の講義の前提条件となるので、必ず講義の前までに行うこと。

英 Classes will be proceed with practicing on your own laptop.

Bring your laptop and make sure you can connect to WiFi such as KITnet.

Set assignments in each class. It takes about 3 hours to study the assignments (implementation of the program).

The assignments will be prerequisites for the next lecture, so be sure to complete before the lecture.

教科書/参考書 Textbooks/Reference Books

日 参考書

中山浩太郎[監修]松尾豊[協力]、塚本邦尊、山田典一、大澤文孝[著]「東京大学のデータサイエンティスト育成講座」マイナビ出版

斎藤 康毅 著 「ゼロから作る Deep Learning」オライリー・ジャパン

英	

成績評価の方法及び基準 Grading Policy

- 日 第1回~12回までに課すプログラミング課題(50%)、第13~15回における PBL への取り組みおよび結果(50%)として評価する。課題提出が5回以上不足する学生は成績評価対象外とする。
- 英 Programing (50%)

PBL (50%)

留意事項等 Point to consider

- 日 ノートパソコンの持参を前提としているが、どうしても用意できない学生は、あらかじめ担当教員へ申し出ること。
- 英 Bring laptop is necessary.