2025 年度シラバス | 科目分類/Subject Categories | | | | | |-------------------------|---------------------------------------|--------------------|-------------------|--| | 学部等/Faculty | /工芸科学部 : /School of Science and | 今年度開講/Availability | /有:/Available | | | | Technology | | | | | 学域等/Field | /設計工学域 : /Academic Field of | 年次/Year | /3年次:/3rd Year | | | | Engineering Design | | | | | 課程等/Program | /機械工学課程・課程専門科目 :/Specialized | 学期/Semester | /後学期:/Second term | | | | Subjects for Undergraduate Program of | | | | | | Mechanical Engineering | | | | | 分類/Category | /:/ | 曜日時限/Day & Period | /月 2 : /Mon.2 | | | 科目情報/Course Information | | | | | | |-------------------------|--|---------|---------------|------------------|-----------------------| | 時間割番号 | 12321201 | | | | | | /Timetable Number | | | | | | | 科目番号 | 12360043 | | | | | | /Course Number | | | | | | | 単位数/Credits | 2 | | | | | | 授業形態 | 講義:Lecture | | | | | | /Course Type | | | | | | | クラス/Class | | | | | | | 授業科目名 | 熱エネルギー輸送現象:Transport Phenomena of Thermal Energy | | | | | | /Course Title | | | | | | | 担当教員名 | /北川 石英:KITAGAWA Atsuhide | | | | | | / Instructor(s) | | | | | | | その他/Other | インターンシップ実施科 | 国際科学技術 | ドコース提供 | PBL 実施科目 Project | DX 活用科目 | | | 目 Internship | 科目 IGP | | Based Learning | ICT Usage in Learning | | | | | | | | | | 実務経験のある教員によ | \circ | 熱対流現象は | こ対する温度・速度計測の実 | 施経験を活かし,熱エネル | | | る科目 | | ギー輸送現象 | 象の基礎に関する授業を行う | | | | Practical Teacher | | | | | | 科目ナンバリング | B_ME3320 | | | | | | /Numbering Code | | | | | | # 授業の目的・概要 Objectives and Outline of the Course - 日 熱エネルギーの輸送現象を伝導,対流,放射の3つの基本的形態に分類し,それぞれの現象を支配する物理法則と,それに基づく基礎方程式につき詳細に述べ,それらの一般的解法を説明するとともに,簡単な問題への応用例につき講述する. - 英 The transport phenomena of thermal energy are categorized by three basic phenomena: conduction, convection and radiation. Physical laws, which govern each phenomenon, and basic equations based on the laws are lectured in detail. General solutions and specific solutions for simple applications are explained. # 学習の到達目標 Learning Objectives - 日 熱伝導の基礎事項(基礎式,解法)を理解する - 2次元層流境界層における強制対流熱伝達の基礎事項(基礎式,無次元数,近似解法)を理解する - 2次元層流境界層における自然対流熱伝達の基礎事項(基礎式,無次元数,近似解法)を理解する - 熱交換器に見られる伝導・対流複合熱伝達の基礎事項を理解する - 相変化を伴う熱伝達である沸騰熱伝達の基礎事項(沸騰曲線)を理解する - 相変化を伴う熱伝達である凝縮熱伝達の基礎事項(膜状凝縮の理論式)を理解する - 放射熱伝達の基礎事項(黒体、ステファン・ボルツマンの法則、形態係数)を理解する - 英 To understand the fundamentals of conduction - To understand the fundamentals of forced convection heat transfer in two-dimensional laminar boudary layer - To understand the fundamentals of natural convection heat transfer in two-dimensional laminar boudary layer - $To \ understand \ the \ fundamentals \ of \ conduction/convection \ combined \ heat \ transfer \ in \ heat \ exchangers$ - To understand the fundamentals of boiling heat transfer To understand the fundamentals of condensation heat transfer To understand the fundamentals of radiation # 学習目標の達成度の評価基準 / Fulfillment of Course Goals (JABEE 関連科目のみ)日基礎事項の理解ができており、かつ応用的な問題に対処できる
応用的な問題への対処は必ずしも十分ではないが、基礎事項は理解している
基礎事項の理解が不十分である
基礎事項の理解ができていない英Basic points are understood, and the application problems can be answered.
Although the answers for application problems are insufficient, the basic points are understood.
The understanding of the basic points is insufficient.
Basic points are not understood. | 授業 | 計画項 | 頁目 Course Plan | | |-----|-----------|---------------------------|---| | No. | | 項目 Topics | 内容 Content | | 1 | 日 | Introduction | 工学的意義、熱力学・流体力学との関連、基本用語の復習、輸送現象様式の分類 | | | —
英 | Introduction | Significance in engineering, relationship to thermodynamics and fluid dynamics, fundamental terms, and classification of transport phenomena. | | 2 | 日 | 伝導 | フーリエの法則,熱伝導率,熱伝導方程式,平板の定常熱伝導,熱通過率 | | | ————
英 | Conduction | Fourier's law, thermal conductivity, heat conduction equation, steady-state conduction through plane wall, and overall heat transfer coefficient. | | 3 | 日 |
 伝導・対流複合熱輸送 (1) | 円筒の定常熱伝導,熱交換器の基礎 | | | 英 | Conjugate heat transfer 1 | Steady-state conducton through cylinder, fundamentals of heat exchangers. | | 4 | 日 | 伝導・対流複合熱輸送(2) | フィンの温度分布,非定常熱伝導 | | | 英 | Conjugate heat transfer 2 | Extended surfaces (Fins) and unstready conduction. | | 5 | 日 | 差分法 | 熱伝導方程式の差分法 | | | 英 | Finite difference method | Finite difference method | | 6 | 日 | 対流 (1) | 対流熱伝達の分類,熱伝達率,連続の式,ナビエ・ストークスの式 | | | 英 | Convection 1 | Classification of convection, heat transfer coefficient, equation of continuity, Navier-Stokes equation. | | 7 | 日 | 対流 (2) | エネルギーの式,境界層近似,無次元数 | | | 英 | Convection 2 | Energy equation, boundary layer approximation, and dimensionless numbers. | | 8 | 日 | 対流 (3) | 管内流の層流強制対流 | | | 英 | Convection 3 | Laminar forced convection in conduits. | | 9 | 日 | 対流 (4) | 物体まわりの強制対流層流熱伝達,乱流熱伝達 | | | 英 | Convection 4 | Laminar forced convection from a body and turbulent convective heat transfer. | | 10 | 日 | 対流 (5) | 自然対流熱伝達 | | | 英 | Convection 5 | Natural convective heat transfer. | | 11 | 日 | 放射 (1) | 黒体、反射率・吸収率・透過率の定義,プランクの法則,ステファン・ボルツマンの法則 | | | 英 | Radiation 1 | Black body, reflectivity, absorptivity, transmissivity, Planck's law, and Stefan-Boltzmann law. | | 12 | 日 | 放射 (2) | キルヒホッフの法則,形態係数,2面間の放射伝熱 | | | 英 | Radiation 2 | Kirchhof's law, geometric view factor, and radiation between two surfaces. | | 13 | 日 | 相変化 (1) | 沸騰熱伝達の分類,沸騰曲線,核沸騰 | | | 英 | Phase change 1 | Classification of boiling, boiling curve, and nucleate boiling. | | | | | | | 14 | 日 | 相変化(2) | 凝縮熱伝達の分類,滴状凝縮,膜状凝縮熱伝達の理論式の導出 | |----|---|----------------|---| | | 英 | Phase change 2 | Classification of condensation, dropwise condensation, and film condensation on a | | | | | vertical plate. | | 15 | 日 | 総括 | 授業のまとめ | | | 英 | Review | Review. | ## 履修条件 Prerequisite(s) - 日 熱力学 | 及び演習、熱力学 | 及び演習、流体力学 | 及び演習,流体力学 | 及び演習の講義内容を理解していることが望ましい. - 其 It is expected to have knowledges on the lectures of Thermodynamics I and exercise, Thermodynamics II and exercise, Fluid dynamics I and exercise, and Fluid dynamics II and exercise. ### 授業時間外学習(予習・復習等) # Required study time, Preparation and review - 日 予習・復習が必要である. 本科目に対しては、67.5 時間の予復習に充てる自己学習時間が必要である. - 英 Preparation and review are required. 67.5 hours are necessary for the preparation and review. # 教科書/参考書 Textbooks/Reference Books - 日 | JSME テキストシリーズ 伝熱工学(日本機械学会発行,丸善出版) - 英 JSME Textbook Series Heat Transfer (JSME, Maruzen) ### 成績評価の方法及び基準 Grading Policy - 日 学期末試験の成績、およびレポート等の成績で評価する。これらに対する配点割合は、各々60%、40%である。合計点が60点以上を合格とする。 - 英 Learning results are evaluated by terminal examinations and reports, for which 60% and 40% of scores are allocated, spectively. This course is graded pass for those who totally scored more than or equal to 60%. ### 留意事項等 Point to consider - 日 学習・教育目標の B(3)(a)に対応する科目であり、達成度評価の対象である. - (レポートに関する注意) - ・文章を引用する際は、引用箇所が明確にわかるようにし、出典を記載すること。 - ・他人が作成したレポートを自分が作成したとして提出しないこと. - 英 This subject coresponds to the subject for the educational goal B(3)(a).