2025 年度シラバス

科目分類/Subject Categories			
学部等/Faculty	等/Faculty /工芸科学部 : /School of Science and		/有:/Available
	Technology		
学域等/Field	/設計工学域 : /Academic Field of	年次/Year	/ 2 年次:/2nd Year
	Engineering Design		
課程等/Program /機械工学課程·課程専門科目:/Specialized		学期/Semester	/前学期:/First term
	Subjects for Undergraduate Program of		
	Mechanical Engineering		
分類/Category	/:/	曜日時限/Day & Period	/火 4 : /Tue.4

科目情報/Course Information					
時間割番号	12312401				
/Timetable Number	netable Number				
科目番号	12360070				
/Course Number	urse Number				
単位数/Credits	2				
授業形態	講義:Lecture				
/Course Type					
クラス/Class					
授業科目名	材料力学 II 及び演習:Strength of Materials II and Exercise				
/Course Title					
担当教員名	/高木 知弘:TAKAKI Tomohiro				
/ Instructor(s)					
その他/Other	インターンシップ実施科	国際科学技術	デコース提供	PBL 実施科目 Project	DX 活用科目
	目 Internship	科目 IGP		Based Learning	ICT Usage in Learning
	実務経験のある教員によ				
	る科目				
	Practical Teacher				
科目ナンバリング	B_ME2410				
/Numbering Code					

授業の目的・概要 Objectives and Outline of the Course 日 複数の応力が作用する組合せ応力状態を理解し、強度評価をできるようにする。 英 Understand combined stress and evaluate strength of materials.

学習の到達目標 Learning Objectives日応力とひずみが複数の成分を有することを理解する。
応力の座標変換と主応力を理解し計算できる。
構成式を理解する。
エネルギー法を理解する。
エネルギー法を理解する。英Understand there are multiple components in stress and strain.
Analyze and understand coordinate transformation of stress and principal stress.
Understand constitutive equation.

学習	学習目標の達成度の評価基準 / Fulfillment of Course Goals(JABEE 関連科目のみ)		
日	組合応力状態にたいする降伏判定ができる。		
	組合応力状態における応力の座標変換と主応力の計算ができる.		

Understand and compute yield criteria.

Understand energy method.

	ある応力状態において,応力とひずみ成分が計算できない.
	応力とひずみが複数成分ありことが理解できない.
英	Can determine yielding under a combined stress condition.
	Can compute coordinate transformation of stress and principal stress in a combined stress condition.
	Cannot compute stresses and strains under a combined stress condition.
	Cannot understand that stress and strain have multiple components.

授業	計画項	頁目 Course Plan	
No.		項目 Topics	内容 Content
1	日	ガイダンス	講義内容と材料力学関連科目「材料力学 及び演習」「有限要素法」との関連について説明する.
	英	Introduction	Explain the lecture content and its relation to the strength of materials related subjects 'Strength of Materials I and Exercises' and 'Finite Element Method'.
2	日	応力成分	応力が6成分あることを説明する.
	英	Stress components	Explain that there are six components of stress.
3	日	ひずみ成分	ひずみが 6 成分あることを説明する.
	英	Strain components	Explain that there are six components of strain.
4	日	構成式	応力 6 成分とひずみ 6 成分を関係づける構成式(応力-ひずみ関係式)を導出する。
	英	Constitutive equation	Derive a constitutive equation (stress-strain relationship) that relates the six components of stress to the six components of strain.
5	日	傾斜面の応力	様々な断面における応力を考える。
	英	Stresses on inclined section	Stresses on inclined section
6	日	モールの応力円	応力の図的表示方法であるモールの応力円を説明する.
	英	Mohr's stress circle	Explain Mohr's stress circle, which is a graphical representation of stresses.
7	日	弾性係数間の関係	ヤング率,ポアソン比,横弾性係数など,弾性係数間の関係を導出する.
	————— 英	Relationship between elastic constants	Derive relationships between elastic moduli such as Young's modulus, Poisson's ratio, and transverse modulus of elasticity.
8	日	組合せ応力 1	複数の応力が作用する組合せ応力を説明する。
	英	Combined stress 1	Explain combined stress, which is a stress condition in which multiple stresses are applied.
9	日	組合せ応力 2	続き.
	英	Combined stress 2	Continue.
10	日	薄肉構造	薄肉構造物に内圧が作用する際の応力状態を説明する.
	英	Thin wall structure	Describe the stress state of a thin-walled structure under internal pressure.

11	日	降伏条件 1	組合せ応力における降伏条件を説明する.
	英	Yield criterion 1	Explain yield criteria under combined stress.
12	日	降伏条件 2	続き.
	英	Yield criterion 2	Continue.
13	日	エネルギー法 1	材料が変形する際に材料内部に蓄えられるエネルギーと変形および外力の関係について説明する.
	英	Energy method 1	Explain the energy stored in deformed materials and the relationship between that energy, deformation, and external forces.
14	日	エネルギー法 2	続き.
	英	Energy method 2	Continue.
15	П	総合復習	総合復習を行う.
	英	Review	Comprehensive review.

履修条件 Prerequisite(s)

- 日 物理, 数学の基礎知識に加えて,「材料力学 | 及び演習」の履修が強く望まれる.
- 英 In addition to the fundamentals of physics and mathematics, students should have an understanding of the contents of "Strength of Materials I and Exercises".

授業時間外学習(予習·復習等)

Required study time, Preparation and review

- 日 本科目は、「材料力学 I 及び演習」とともに他の科目の基礎となるものであるから、十分な復習を行う必要がある。なお、本科目の目標を達成するには、復習のために最低 67.5 時間の自己学習時間を要する。
- 英 As this subject is the most fundamental in the mechanical engineering, a minimum of 67.5 hours of review time is required to achieve the objectives of the subject.

教科書/参考書 Textbooks/Reference Books

- 日 教科書は指定しない。講義資料は moodle に挙げている。
- 英 Textbooks are not specified. Lecture materials are available on moodle.

成績評価の方法及び基準 Grading Policy

- 日 学期末に科す試験の成績と、授業中に行う小テストの結果に応じて評価する。試験の結果を50%、演習・小テストの結果を50%として評価し、その合計点が60点以上を合格とする。
- 英 Final examination 50% + every class mini tests 50% = 100%

留意事項等 Point to consider

- 日 学習・教育目標のB(2)(a)に対応する科目であり、達成度評価の対象である.
- 英