2025 年度シラバス

科目分類/Subject Cat	科目分類/Subject Categories			
学部等/Faculty	/工芸科学部 : /School of Science and	今年度開講/Availability	/無:/Not available	
	Technology			
学域等/Field	/ 先端科学技術課程 : /Undergraduate	年次/Year	/2年次:/2nd Year	
	Program of Integrated Science and			
	Technology			
課程等/Program	/課程専門科目:/Specialized Subjects	学期/Semester	/後学期:/Second term	
分類/Category	/課程専門科目:/Specialized Subjects	曜日時限/Day & Period	/集中:/Intensive	

科目情報/Course Information					
時間割番号	17729901				
/Timetable Number					
科目番号	17760272				
/Course Number					
単位数/Credits	2				
授業形態	講義:Lecture				
/Course Type					
クラス/Class					
授業科目名	機械システム開発学:Me	chanical Syste	em Developm	ent	
/Course Title					
担当教員名	/機械工学課程関係教員:	Related teach	er of Undergr	aduate Program of Mechar	nical Engineering
/ Instructor(s)					
その他/Other	インターンシップ実施科	国際科学技術	ドコース提供	PBL 実施科目 Project	DX 活用科目
	目 Internship	科目 IGP		Based Learning	ICT Usage in Learning
	実務経験のある教員によ				
	る科目				
	Practical Teacher				
科目ナンバリング					
/Numbering Code					

授業の目的・概要 Objectives and Outline of the Course

- 日 機械工学で必要とされる 4 力学である熱力学・流体力学・材料力学・機械力学の内、材料力学・機械力学について講述する。材料力学においては、機械や構造物に外力(引張・圧縮・曲げ・ねじり)が作用する場合、その要素に生じる応力や変形について講述する。機械力学においては、微小変位の動力学(振動学)を 1 質点 1 自由度系に限定して、特に、非減衰系と減衰系の自由振動及び強制振動について講述する。
- 英 Strength of materials and kinematics and dynamics of mechanical systems which are very important mechanics in mechanical engineering are lectured. In strength of materials, stress and deformation of material element in case with tension, compression, bending and torsion are lectured. In kinematics and dynamics of mechanical systems, vibration dynamics in one mass point single-degree-of-freedom system, especially, free vibration and forced vibration in undumped and dumped systems, is lectured.

学習の到達目標 Learning Objectives

- 日 引張・圧縮を受ける棒に生じる垂直応力、垂直ひずみと棒の変形を静定問題について求められる。
 - ねじりを受ける棒に生じるせん断応力、せん断ひずみと棒のねじれ変形を静定問題について求められる。
 - はりの曲げによって生じる曲げモーメントとせん断力が求められ、せん断力図と曲げモーメント図が描け、はりに生じる曲げ応力が求められる。また、静定ばりのたわみ曲線が求められる。

調和振動の基本事項を理解する。

- ニュートンの第2法則(運動方程式)と1質点系自由振動を理解する。
- 1 質点系強制振動を理解する。
- 英 To solve statically problem for bar with tension and compression.
 - To solve statically problem for bar with torsion.

To solve bending moment and shear stress and bending stress.

To understand harmonic vibration.

To understand Newton's equation of motion and free vibration in one mass point system.

To understand forced vibration in one mass point system.

学習	引目標の達成度の評価基準 / Fulfillment of Course Goals(JABEE 関連科目のみ)
日	
英	

授業	授業計画項目 Course Plan					
No. 項目 Topics			内容 Content			
1	日	機械システム開発学概説	機械システム開発学で行う材料力学および機械力学についての概説を行う。			
	英	Introduction to mechanical	Strength of materials and kinematics and dynamics of mechanical system are			
		system development	outlined.			
2		材料の強度と許容応力、垂直応	内力としての応力とひずみの概念を述べた後、材料の応力-ひずみ線図を基に弾性と塑			
		力と垂直ひずみ	性の違いを述べるとともに、材料の強度と許容応力について説明する。さらに、垂直応			
			力と垂直ひずみ、フックの法則について説明する。			
	英	Strength of materials	Strength of materials, allowable stress, normal stress and normal strain are lectured.			
3	日	引張と圧縮を受ける棒	種々の形状の棒に引張・圧縮荷重が作用したときに棒に生じる引張・圧縮応力とひずみ			
			および棒の変形について述べる。			
	英	Bar with tension and	Tensile stress, compressive stress and deformation of bars with various shapes are			
		compression	lectured.			
4	日	せん断応力とせん断ひずみ、丸	せん断応力とせん断ひずみ、フックの法則について説明する。さらに、種々の形状の丸			
		棒のねじり(1)	棒にねじりモーメントが作用するときに棒に生じるせん断応力とひずみおよび棒の変			
			形について述べる。			
	英	Shear stress, shear strain and	Shear stress, shear strain and Hooke's law are lectured. Also, in round bar with			
		torsion of round bar 1	torsional moment, shear stress, shear strain and deformation are lectured.			
5	日	丸棒のねじり(2)	前週に引き続いて、丸棒にねじりモーメントが作用したときに棒に生じるせん断応力と			
			せん断ひずみについて述べる。			
	英	Torsion of round bar 2	Torsion of round bar 2			
6	日	はりの曲げとせん断力、曲げモ	はりの曲げについて分類した後,はりに横荷重が作用したときに、はりに生じるせん断			
		ーメント	力と曲げモーメントについて述べる。さらに、SFDとBMDを作図する方法を説明す			
			る。			
	英	Bending of beam, shear stress	In beam with lateral load, shear stress and bending moment are lectured.			
	_	and bending moment				
7	日	曲げモーメントによる応力と	はりに曲げモーメントが作用したとき、はりに生じる曲げ応力とひずみについて説明す			
		ひずみ、断面二次モーメント	る。さらに、図心、断面一次モーメント、断面二次モーメントについて述べる。 			
	英	Stress, strain and second	In beam with bending moment, stress, strain and second moment of area are lectured.			
		moment of area for bending				
0		moment	たわみと曲げモーメントとの関係を説明し、これを用いてはりのたわみ曲線を求める方			
8	B	はりのたわみ				
	英	Bending of beam	法を説明する。 Bonding of boom bonding moment and bonding ourse are lectured.			
9	日	機械と振動	Bending of beam, bending moment and bending curve are lectured.			
9			いろいろな振動,機械における振動,振動の工学的利用について説明する。			
10	英	Vibration and machine 1質点系の自由振動	Vibration in engineering is outlined.			
10	日	「貝点ボの自由振動 Free vibration in one mass	1質点系およびその他の1自由度系の運動方程式について説明する。			
	英		Equation of motion in one mass point single-degree-of-freedom system is lectured.			
11		point system	非滅衰1質点系の自由振動について説明する。			
11	日	1 質点系の自由振動				
	英	Free vibration in one mass	Free vibration in undumped one mass point system is lectured.			
12		point system 1質点系の自由振動	減衰1質点系の自由振動について説明する。			
12	日					
	英	Free vibration in one mass	Free vibration in dumped one mass point system is lectured.			

	T	point system	
13	日	1 質点系の強制振動	非減衰1質点系の定常応答と周波数応答関数について説明する。
	英	Forced vibration in one mass	Steady-state response and frequency response function in undumped one mass point
		point system	system is lectured.
14	日	1 質点系の強制振動	減衰1質点系の定常応答と周波数応答関数について説明する。
	英	Forced vibration in one mass	Steady-state response and frequency response function in dumped one mass point
		point system	system is lectured.
15	日	1 質点系の強制振動	1 質点系の過渡応答について説明する。
	英	Forced vibration in one mass	Transient response in one mass point system is lectured.
		point system	

履修	を条件 Prerequisite(s)
日	
英	

授業	受業時間外学習(予習・復習等)		
Req	equired study time, Preparation and review		
日	特になし		
英	Nothing		

教科	科書/参考書 Textbooks/Reference Books	
日	教科書:なし/参考書:なし	
英	Textbook: none	
	Textbook(supplemental): none	

成績評価の方法及び基準 Grading Policy	
日	授業時に課すレポートの提出状況・内容で合計点を算出し、その合計が 60 点以上を合格とする。
英	Performance is evaluated a total of 100 points (report: 100 points), and the credit is given by 60 points or higher.

留意事項等 Point to consider	
日	
英	