2025 年度シラバス

科目分類/Subject Categories			
学部等/Faculty	/大学院工芸科学研究科(博士前期課程):	今年度開講/Availability	/有:/Available
	/Graduate School of Science and		
	Technology (Master's Programs)		
学域等/Field	/設計工学域 : /Academic Field of	年次/Year	/1~2年次:/1st through 2nd
	Engineering Design		Year
課程等/Program	/機械物理学専攻 : /Master's Program of	学期/Semester	/第3クォータ:/Third quarter
	Mechanophysics		
分類/Category	/授業科目:/Courses	曜日時限/Day & Period	/火 3/金 3 : /Tue.3/Fri.3

科目情報/Course Information					
時間割番号	62312302				
/Timetable Number					
科目番号	62360128				
/Course Number					
単位数/Credits	2				
授業形態	講義:Lecture				
/Course Type					
クラス/Class					
授業科目名	生物流体力学:Biofluid Mechanics				
/Course Title					
担当教員名	/福井 智宏: FUKUI Tomohiro				
/ Instructor(s)					
その他/Other	インターンシップ実施科	国際科学技術	ドコース提供	PBL 実施科目 Project	DX 活用科目
	目 Internship	科目 IGP		Based Learning	ICT Usage in Learning
	実務経験のある教員によ				
	る科目				
	Practical Teacher				
科目ナンバリング	M_MP5312	•			
/Numbering Code					

授業の目的・概要 Objectives and Outline of the Course 日 生物流体として、主に、血液循環系のバイオメカニクスを取り上げ、生命現象における力学的刺激の役割の基礎的理解を図る。 英 Roles of mechanical stimuli in biology are explained to understand biomechanics of cardiovascular system.

学習	学習の到達目標 Learning Objectives		
日	血液循環系のバイオメカニクスを理解する.		
	生命体における輸送現象を理解する。		
	Murray の最小仕事モデルを理解する.		
	血液のレオロジーを理解する.		
	赤血球の機能とレオロジーを理解する.		
英	To understand biomechanics of cardiovascular system.		
	To understand transport phenomena in living systems.		
	To understand Murray's law.		
	To understand blood rheology.		
	To understand red blood cell's function and rheology.		

学習	引目標の達成度の評価基準 / Fulfillment of Course Goals(JABEE 関連科目のみ)
日	
英	

授業	計画項	目 Course Plan	
No.		項目 Topics	内容 Content
1	日	血液循環系のバイオメカニク	血液循環系のバイオメカニクスを説明する.
		ス	
	英	Biomechanics of	Biomechanics of cardiovascular system is explained.
		cardiovascular system	
2	日	機能的適応・再構築・恒常性	機能的適応・再構築・恒常性を説明する.
	英	Mechanical adaptation,	Mechanical adaptation, remodeling, and homeostasis are explained.
		remodeling, and homeostasis	
3	日	生命体における輸送現象	生命体における輸送現象を説明する.
	英	Transport phenomena in living	Transport phenomena in living systems are explained.
		systems	
4	日	心臓と血液循環系	心臓と血液循環系を説明する.
	英	Cardiovascular system	Cardiovascular system is explained.
5	日	Murray の最小仕事モデル	Murray の最小仕事モデルを説明する.
	英	Murray's law	Murray's law
6	日	血液流れと心血管系疾患	血液流れと心血管系疾患を説明する.
	英	Blood flow and cardiovascular	Blood flow and cardiovascular disease are explained.
		disease	
7	日	血管の生物学的応答	血管の生物学的応答を説明する.
	英	Biological responses in blood	Biological responses in blood vessels are explained.
		vessels	
8	日	動脈硬化発症の二つの仮説	動脈硬化発症の二つの仮説を説明する.
	英	Two major hypotheses in	Two major hypotheses in atheroscleolosis are explained.
		atheroscleolosis	
9	日	内皮細胞とせん断応力	内皮細胞とせん断応力を説明する.
	英	Endothelial cell and shear	Endothelial cell and shear stress are explained.
10		stress 血液のレオロジー	血液のレオロジーを説明する.
10	日 英	皿放のレオロシー Blood rheology	
11	日	赤血球の機能とレオロジー	Blood rheology is explained. 赤血球の機能とレオロジーを説明する.
11	英	水皿球の機能とレオロシー Red blood cell's function and	永皿球の機能とレオロターを説明する。 Red blood cell's function and rheology are explained.
	央	rheology	Red blood cell's function and meology are explained.
12	日		粒子懸濁液のレオロジーを説明する.
12	英	Particle suspension rheology	型」の個人のレクロン で記句する. Particle suspension rheology is explained.
13	日	呼吸器系のバイオメカニクス	Franticle suspension meology is explained. 呼吸器系のバイオメカニクスを説明する。
13	英	Biomechanics of respiratory	一大文権宗のバイオスカース人を武功する。 Biomechanics of respiratory system is explained.
		system	Distributions of respiratory system to explainted.
14	日		慢性閉塞性肺疾患と吸入療法を説明する。
- '	英	COPD and breathing therapy	COPD and breathing therapy are explained.
15	日	まとめ	まとめ
13	英	Summary	Summary
	_	Cananary	- Canninary

履修	S条件 Prerequisite(s)
日	
英	

授業	授業時間外学習(予習・復習等)		
Required study time, Preparation and review			
日	本学では1単位当たりの学修時間を 45 時間としています.毎回の授業にあわせて事前学修・事後学修を行ってください.		
英	Please note that KIT requires 45 hours of study from students to award one credit, including both in-class instructions as		
	well as study outside classes. Students are required to prepare for each class and complete the review after each class.		

教科書/参考書 Textbooks/Reference Books

- Biomechanics Circulation (Springer), バイオメカニクス数値シミュレーション (コロナ社), 生体機能工学 (日本機械学会), 生物流体力学 (朝倉書店), バイオレオロジー (米田出版), 血液のレオロジーと血流 (コロナ社), 循環系のバイオメカニクス (コロナ社) など.
- Biomechanics Circulation (Springer), Biomechanics numerical simulation (Corona), Biomechanical engineering (JSME), Biofluid mechanics (Asakura), Biorheology (Yoneda), Blood rheology and blood flow (Corona), Biomechanics of circulation system (Corona), etc

成績評価の方法及び基準 Grading Policy

- 日 授業中に課す小テストならびにレポートの結果に応じて評価し、その合計点が 60 点以上を合格とする.
- 英 Performance is evaluated a total of 100 points by exercise and report, and the credit is given by 60 points or higher.

留意事項等 Point to consider

- 日 レポートは、文章を引用する際は、引用箇所が明確にわかるようにし、出典を記載すること。他人が作成したレポートを自分が 作成したとして提出しないこと。
- 英 References should be properly and clearly listed in the reports. Do not submit reports created by others.