2025 年度シラバス

科目分類/Subject Cat	科目分類/Subject Categories			
学部等/Faculty	/大学院工芸科学研究科(博士後期課程):	今年度開講/Availability	/有:/Available	
	/Graduate School of Science and			
	Technology (Doctoral Programs)			
学域等/Field	/物質・材料科学域 : /Academic Field of	年次/Year	/1~3年次:/1st through 3rd	
	Materials Science		Year	
課程等/Program	/物質・材料化学専攻:/Doctoral Program of	学期/Semester	/第1クォータ:/First quarter	
	Materials Chemistry			
分類/Category	/授業科目:/Courses	曜日時限/Day & Period	/火 1/金 2 : /Tue.1/Fri.2	

科目情報/Course Info	rmation				
時間割番号	81302101				
/Timetable Number					
科目番号	81360011				
/Course Number					
単位数/Credits	2				
授業形態	講義:Lecture				
/Course Type					
クラス/Class					
授業科目名	立体機能物質化学:Stere	ochemical Aspe	cts in Synth	etic Organic Chemistry, Ad	vanced
/Course Title					
担当教員名	/中 建介/楠川 隆博:N	IAKA Kensuke/	KUSUKAWA	Takahiro	
/ Instructor(s)					
その他/Other	インターンシップ実施科	国際科学技術	コース提供	PBL 実施科目 Project	DX 活用科目
	目 Internship	科目 IGP		Based Learning	ICT Usage in Learning
		0			
	実務経験のある教員によ				
	る科目				
	Practical Teacher				
科目ナンバリング	D_MC7512				
/Numbering Code					

授業の目的・概要 Objectives and Outline of the Course

- 日 最新の立体選択的な有機合成反応に関して、選択性発現の要因と有機合成への利用の両面に重点を置いて講述する。
- 英 Recent advances in stereoselective organic reactions are described with the emphasis on the origin of the selectivity as well as on their synthetic applications.

学習の到達目標 Learning Objectives 日 実践的な有機化学の知識を身につける。

To acquire knowledge of practical organic chemistry.

To acquire logical research methods in organic chemistry.

学	習目標の達成度の評価基準 / Fulfillment of Course Goals(JABEE 関連科目のみ)
日	
英	

授業	授業計画項目 Course Plan		
No.		項目 Topics	内容 Content
1	日	General Introduction	Significance of Stereocontrol in Organic Synthesis will be presented.
	英	General Introduction	Significance of Stereocontrol in Organic Synthesis will be presented.

2	B	Diastereoselectivity and	Difference and relation between diastereoselectivity and enantioselectivity will be
_		Enantioselectivity	described by showing representative examples.
	英	Diastereoselectivity and	Difference and relation between diastereoselectivity and enantioselectivity will be
		Enantioselectivity	described by showing representative examples.
3	日	Enantioselective Preparation	The advantages and disadvantages of several methods for asymmetric synthesis will
		of Organic Compounds (1)	be summarized by showing representative examples.
	英	Enantioselective Preparation	The advantages and disadvantages of several methods for asymmetric synthesis will
		of Organic Compounds (1)	be summarized by showing representative examples.
4	日	Enantioselective Preparation	The advantages and disadvantages of several methods for asymmetric synthesis will
		of Organic Compounds (2)	be summarized by showing representative examples.
	英	Enantioselective Preparation	The advantages and disadvantages of several methods for asymmetric synthesis will
		of Organic Compounds (2)	be summarized by showing representative examples.
5		Introduction to Asymmetric	General remarks on the asymmetric synthesis will be presented with emphasis on
		Synthesis	types of asymmetric induction.
	英	Introduction to Asymmetric	Introduction to Asymmetric Synthesis
		Synthesis	
6	日	Lewis Acid-Catalyzed	Recent advances in the asymmetric Diels-Alder reaction and aldol reaction will be
		Reactions (1)	described.
	英	Lewis Acid-Catalyzed	Recent advances in the asymmetric Diels-Alder reaction and aldol reaction will be
		Reactions (1)	described.
7	日	Lewis Acid-Catalyzed	Recent advances in the asymmetric alkylation of aldehydes, ketones, and relevant
		Reactions (2)	functionalities will be presented.
	英	Lewis Acid-Catalyzed	Recent advances in the asymmetric alkylation of aldehydes, ketones, and relevant
		Reactions (2)	functionalities will be presented.
8	日	Transition Metal-Catalyzed	Recent advances in the transition metal-catalyzed redox reactions, including
		Reaction (1)	asymmetric epoxidation, dihydroxylation, carbonyl reduction, and hydrogenation, will
	**	Transition Matal Catalysed	be described.
	英	Transition Metal-Catalyzed	Recent advances in the transition metal-catalyzed redox reactions, including
		Reaction (1)	asymmetric epoxidation, dihydroxylation, carbonyl reduction, and hydrogenation, will be described.
9	B	Transition Metal-Catalyzed	Recent advances in the transition metal-catalyzed carbon-carbon bond-forming
3	Н	Reaction (2)	reactions, including asymmetric allylation, Heck, Cross-coupling, and carbonyl
		redefiel (2)	addition reactions, will be described.
	英	Transition Metal-Catalyzed	Recent advances in the transition metal-catalyzed carbon-carbon bond-forming
		Reaction (2)	reactions, including asymmetric allylation, Heck, Cross-coupling, and carbonyl
		• •	addition reactions, will be described.
10	日	Transition Metal-Catalyzed	Recent advances in the transition metal-catalyzed carbon-carbon bond-forming
		Reaction (3)	reactions, other examples.
	英	Transition Metal-Catalyzed	Recent advances in the transition metal-catalyzed carbon-carbon bond-forming
		Reaction (3)	reactions, other examples.
11	B	Organocatalyst (1)	Recent advances in asymmetric synthesis by using organocatalysts will be
			summarized with particular emphasis on the molecular design of the catalysts.
	英	Organocatalyst (1)	Recent advances in asymmetric synthesis by using organocatalysts will be
			summarized with particular emphasis on the molecular design of the catalysts.
12	日	Organocatalyst (2)	A combinatorial approach in the development of organocatalysts will be briefly
			reviewed.
	英	Organocatalyst (2)	A combinatorial approach in the development of organocatalysts will be briefly
			reviewed.
13	日	Asymmetric	The characteristic features of enantiotopic group differentiation in asymmetric
		Desymmetrization (1)	synthesis will be presented by showing several representative examples.
	英	Asymmetric	The characteristic features of enantiotopic group differentiation in asymmetric
		Desymmetrization (1)	synthesis will be presented by showing several representative examples.
14	日	Asymmetric	Recent advances in asymmetric desymmetrization, especially those based upon a

	Desymmetrization (2) catalytic approach, will be reviewed.		catalytic approach, will be reviewed.
	英	Asymmetric	Recent advances in asymmetric desymmetrization, especially those based upon a
		Desymmetrization (2)	catalytic approach, will be reviewed.
15	日	Stereochemical Aspects in	Summary
		Synthetic Organic Chemistry,	
		Advanced	
	英	Stereochemical Aspects in	Summary
		Synthetic Organic Chemistry,	
		Advanced	

履修	履修条件 Prerequisite(s)		
日			
英			

授業時間外学習(予習・復習等)

Required study time, Preparation and review

- ・有機化学の素養を幅広く身につけていること。
 - ・各回の授業に対して、予習と復習を合わせて 3 時間程度の学習を要する。これに加え、レポート提出のための学習が必要である。
- 英 Students should have basic knowledge on the broad-spectrum of organic chemistry. Students should study for about total 3 h before and after each class. Additional study is required for report preparation.

Quotations from others should be minimum and, if quoted, they should be clearly indicated in your report with proper citations.

教科	教科書/参考書 Textbooks/Reference Books		
日			
英			

成績	成績評価の方法及び基準 Grading Policy		
日	指定した課題へのレポートにより評価する。		
英	Evaluation by reports on assigned topics.		

留意	留意事項等 Point to consider		
日			
英			